Coarse geometry and Callias quantisation
نویسندگان
چکیده
منابع مشابه
Coarse Geometry and Randomness
1 Introductory graph and metric notions 5 1.1 The Cheeger constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Expander graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Isoperimetric dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Rough isome...
متن کاملCoarse geometry and asymptotic dimension
We prove that two spaces, whose coarse structures are induced by metrisable compactifications, are coarsely equivalent if and only if their (Higson) coronas are homeomorphic. We introduce translation C∗-algebras for coarse spaces which admit a countable, uniformly bounded cover using projection-valued measures. This was already done in [Roe03]. Here we give a more complete exposition on the sub...
متن کاملCoarse Geometry via Grothendieck Topologies
In the course of the last years several authors have studied index problems for open Riemannian manifolds. The abstract indices are elements in the K-theory of an associated C∗-algebra, which only depends on the ”coarse” (or large scale) geometry of the underlying metric space. In order to make these indices computable J.Roe introduced a new cohomology theory, called coarse cohomology, which is...
متن کاملCoarse Geometry and P. A. Smith Theory
We define a generalization of the fixed point set, called the bounded fixed set, for a group acting by isometries on a metric space. An analogue of the P. A. Smith theorem is proved for metric spaces of finite asymptotic dimension, which relates the coarse homology of the bounded fixed set to the coarse homology of the total space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2021
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/8202