Collaborative Representation Using Non-Negative Samples for Image Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image classification using kernel collaborative representation with regularized least square

Sparse representation based classification (SRC) has received much attention in computer vision and pattern recognition. SRC codes a testing sample by sparse linear combination of all the training samples and classifies the testing sample into the class with the minimum representation error. Recently, Zhang analyzes the working mechanism of SRC and points out that it is the collaborative repres...

متن کامل

Galaxy Image Classification using Non-Negative Matrix Factorization

In modern astronomy with the advent of astronomical imaging technology developments and the increased capacity of digital storage, lead to the production of photographic atlases of data which need to be processed autonomously. Galaxies morphology is an important topic to understand questions concerning the evolution and formation of galaxies and their content. In this work, morphological classi...

متن کامل

Galaxy Image Classification using Non-Negative Matrix Factorization

In modern astronomy with the advent of astronomical imaging technology developments and the increased capacity of digital storage, lead to the production of photographic atlases of data which need to be processed autonomously. Galaxies morphology is an important topic to understand questions concerning the evolution and formation of galaxies and their content. In this work, morphological classi...

متن کامل

Collaborative Representation for Classification, Sparse or Non-sparse?

Sparse representation based classification (SRC) has been proved to be a simple, effective and robust solution to face recognition. As it gets popular, doubts on the necessity of enforcing sparsity starts coming up, and primary experimental results showed that simply changing the l1-norm based regularization to the computationally much more efficient l2-norm based non-sparse version would lead ...

متن کامل

Discriminative Collaborative Representation for Classification

The recently proposed l2-norm based collaborative representation for classification (CRC) model has shown inspiring performance on face recognition after the success of its predecessor — the l1-norm based sparse representation for classification (SRC) model. Though CRC is much faster than SRC as it has a closed-form solution, it may have the same weakness as SRC, i.e., relying on a “good” (prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2019

ISSN: 1424-8220

DOI: 10.3390/s19112609