Combinatorial curve neighborhoods for the affine flag manifold of type A11

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Curve Neighborhoods for the Affine Flag Manifold of Type A1

Let X be the affine flag manifold of Lie type A1. Its moment graph encodes the torus fixed points (which are elements of the infinite dihedral group D∞) and the torus stable curves in X. Given a fixed point u ∈ D∞ and a degree d = (d0, d1) ∈ Z≥0, the combinatorial curve neighborhood is the set of maximal elements in the moment graph of X which can be reached from u using a chain of curves of to...

متن کامل

A Pieri-type Formula for the Equivariant Cohomology of the Flag Manifold

The classical Pieri formula is an explicit rule for determining the coefficients in the expansion s1m · sλ = ∑ c 1,λ sμ , where sν is the Schur polynomial indexed by the partition ν. Since the Schur polynomials represent Schubert classes in the cohomology of the complex Grassmannian, this gives a partial description of the cup product in this cohomology. Pieri’s formula was generalized to the c...

متن کامل

Combinatorial Interpretations for Rank-Two Cluster Algebras of Affine Type

Fomin and Zelevinsky [9] show that a certain two-parameter family of rational recurrence relations, here called the (b, c) family, possesses the Laurentness property: for all b, c, each term of the (b, c) sequence can be expressed as a Laurent polynomial in the two initial terms. In the case where the positive integers b, c satisfy bc < 4, the recurrence is related to the root systems of finite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2017

ISSN: 1944-4184,1944-4176

DOI: 10.2140/involve.2017.10.317