Combinatorial method in adjoint linear systems on toric varieties
نویسندگان
چکیده
منابع مشابه
Combinatorial Method in Adjoint Linear Systems on Toric Varieties
For nonsingular varieties, the one-dimensional case is an easy fact in curve theory. The two-dimensional case follows from the work of Reider [16]. In higherdimensional cases, (I) is known for n = 3 [3] and n = 4 [8], and by [1] we know that KX + 1 2 (n2 +n+ 2)D is generated by global sections for all n. Less is known about (II) with one exception: if D is already very ample, then (I) and (II) ...
متن کاملSpecial Linear Systems on Toric Varieties
We consider linear systems on toric varieties of any dimension, with invariant base points, giving a characterization of special linear systems. We then make a new conjecture for linear systems on rational surfaces. Introduction Let us take the projective plane P and let us consider the linear system of curves of degree d having some points of fixed multiplicity. The expected dimension of such ...
متن کاملCombinatorial Applications of Cohomology of Toric Varieties
1 f-vector for convex polytopes Given a convex polytope P of full dimension in R, we can consider the f-vector, fk = number of k-faces, 0 ≤ k ≤ d− 1. A natural question is Question 1. Given an abstract tuple f of d integers, what are necessary and sufficient conditions for f to be the f-vector of a convex polytope? It turns out to be quite difficult to give sufficient conditions, so let’s deter...
متن کاملMinicourse on Toric Varieties
1. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Characters and 1-Parameter Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3. Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملLectures on Toric Varieties
1 Four constructions 1 1.1 First construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Second construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Third construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Fourth construction . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2003
ISSN: 0026-2285
DOI: 10.1307/mmj/1070919555