Combining spatial and sociodemographic regression techniques to predict residential fire counts at the census tract level

نویسندگان

چکیده

This work examines different spatial and sociodemographic models for predicting residential fire counts at the census tract level 118 U.S. departments across 25 states. The give five-year forecasts of 3392 tracts which contain over 13 million residents in total. All described this paper train on incident data from National Fire Incident Reporting System (NFIRS) interval 2006–2011 (inclusive) are evaluated based their ability to predict that occurred 2012–2016. Two strictly considered- a simple “count” model serves as baseline all other utilizes kernel density estimation (KDE) with statistically optimized bandwidths. Using American Community Survey (ACS), an examination effects demographic housing factors risk is presented. suggest per person generally higher attributes corresponding socioeconomic disadvantage such low median incomes small fractions college degrees. These trends inform design Bayesian hierarchical Poisson regression model, shown make predictions 9% lower root mean squared error (RMSE) relative base model. A then conducted residuals regression, results 15% RMSE improvement compared conditional autoregressive (CAR) incorporates information directly into regression. Although CAR model's point estimate (7% than model), it allows generation probabilistic gives spatially-informed statistical estimates variables. highlights utility geocoded well machine learning techniques can utilize these datasets improved predictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the spatial accessibility to health professionals at French census block level

BACKGROUND The evaluation of geographical healthcare accessibility in residential areas provides crucial information to public policy. Traditional methods - such as Physician Population Ratios (PPR) or shortest travel time - offer only a one-dimensional view of accessibility. This paper developed an improved indicator: the Index of Spatial Accessibility (ISA) to measure geographical healthcare ...

متن کامل

the underlying structure of language proficiency and the proficiency level

هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...

15 صفحه اول

A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA

Background: Polycyclic aromatic hydrocarbons (PAHs) are generated as a byproduct of combustion, and are associated with respiratory symptoms and increased risk of asthma attacks. Objectives: To assign daily, outdoor exposures to participants in the Fresno Asthmatic Children’s Environment Study (FACES) using land use regression models for the sum of 4-, 5and 6-ring PAHs (PAH456). Methods: PAH da...

متن کامل

Using Regression Techniques to Predict Large Data Transfers

The recent proliferation of Data Grids and the increasingly common practice of using resources as distributed data stores provide a convenient environment for communities of researchers to share, replicate, and manage access to copies of large datasets. This has led to the question of which replica can be accessed most efficiently. In such environments, fetching data from one of the several rep...

متن کامل

Combining Lexical and Spatial Knowledge to Predict Spatial Relations between Objects in Images

Explicit representations of images are useful for linguistic applications related to images. We design a representation based on first-order models that capture the objects present in an image as well as their spatial relations. We take a supervised learning approach to the spatial relation classification problem and study the effects of spatial and lexical information on prediction performance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, Environment and Urban Systems

سال: 2021

ISSN: ['0198-9715', '1873-7587']

DOI: https://doi.org/10.1016/j.compenvurbsys.2021.101633