Common Denominator for Value and Expectation No-go Theorems: Extended Abstract

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Denominator for Value and Expectation No-go Theorems: Extended Abstract

Hidden-variable (HV) theories allege that a quantum state describes an ensemble of systems distinguished by the values of hidden variables. No-go theorems assert that HV theories cannot match the predictions of quantum theory. The present work started with repairing aws in the literature on no-go theorems asserting that HV theories cannot predict the expectation values of measurements. That lit...

متن کامل

On Hidden Variables: Value and Expectation No-go Theorems

No-go theorems assert that hidden-variable theories, subject to appropriate hypotheses, cannot reproduce the predictions of quantum theory. We examine two species of such theorems, value no-go theorems and expectation no-go theorems. The former assert that hidden-variables cannot match the predictions of quantum theory about the possible values resulting from measurements; the latter assert tha...

متن کامل

Denominator formulas for Lie superalgebras ( extended abstract )

We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie superalgebra for a distinguished set of positive roots. Résumé. Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d’une superalgèbre de Lie basique classique pour un ensemble distingué de racines positives.

متن کامل

No Go Theorems in Interacting

In a Galilean invariant system, for which the Landau theory of Fermi-liquids was originally designed, the (velocity-independent) interactions are the same in the moving frame as in the stationary frame. Therefore interactions do not renormalize the current operator. It then follows that, among other things, instability due to interactions to a state with uniform current is not possible. If it w...

متن کامل

Geometric Quantization and No Go Theorems

A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science

سال: 2018

ISSN: 2075-2180

DOI: 10.4204/eptcs.266.6