Commutativity of $\Gamma$-Generalized Boolean Semirings with Derivations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Derivations and Commutativity of Prime Rings with Involution

Let R be a ring with involution ′∗′. A map δ of the ring R into itself is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. An additive map F : R → R is called a generalized derivation on R if F(xy) = F(x)y + xδ(y) for all x, y ∈ R, Permanent address: Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh202002, India 292 Shakir Ali and Husain Alhazmi whe...

متن کامل

Generalized Derivations on Semiprime Gamma Rings with Involution

An extensive generalized concept of classical ring set forth the notion of a gamma ring theory. As an emerging field of research, the research work of classical ring theory to the gamma ring theory has been drawn interest of many algebraists and prominent mathematicians over the world to determine many basic properties of gamma ring and to enrich the world of algebra. The different researchers ...

متن کامل

On Prime-Gamma-Near-Rings with Generalized Derivations

Copyright q 2012 Kalyan Kumar Dey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let N be a 2-torsion free prime Γ-near-ring with center ZN. Let f, d and g, h be two generalized derivations on N. We prove the following res...

متن کامل

On derivations and commutativity in prime rings

Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0. 1. Introduction. Let R be a prime ring and d a nonzero derivation of R. Define [x, y] 1 = [x, y] = xy − yx, then an Engel condition is a polynomial [x, y] k = [[x, y] k−1 ,y]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics Research

سال: 2016

ISSN: 1916-9809,1916-9795

DOI: 10.5539/jmr.v8n4p132