Commuting holomorphic functions and hyperbolic automorphisms
نویسندگان
چکیده
منابع مشابه
Hyperbolic Automorphisms and Holomorphic Motions in C 2
Holomorphic motions have been an important tool in the study of complex dynamics in one variable. In this paper we provide one approach to using holomorphic motions in the study of complex dynamics in two variables. To introduce these ideas more fully, let 1r be the disk of radius r and center 0 in the plane, let P1 be the Riemann sphere, and recall that a holomorphic motion of a set E ⊂ P1 is ...
متن کاملNon-constant bounded holomorphic functions of hyperbolic numbers - Candidates for hyperbolic activation functions
The Liouville theorem states that bounded holomorphic complex functions are necessarily constant. Holomorphic functions fulfill the socalled Cauchy-Riemann (CR) conditions. The CR conditions mean that a complex z-derivative is independent of the direction. Holomorphic functions are ideal for activation functions of complex neural networks, but the Liouville theorem makes them useless. Yet recen...
متن کاملCommuting semigroups of holomorphic mappings
Let S1 = {Ft}t≥0 and S2 = {Gt}t≥0 be two continuous semigroups of holomorphic self-mappings of the unit disk ∆ = {z : |z| < 1} generated by f and g, respectively. We present conditions on the behavior of f (or g) in a neighborhood of a fixed point of S1 (or S2), under which the commutativity of two elements, say, F1 and G1 of the semigroups implies that the semigroups commute, i.e., Ft◦Gs = Gs◦...
متن کاملWeight Filtrations via Commuting Automorphisms
We consider a filtration of the K-theory space for a regular noetherian ring proposed by Goodwillie and Lichtenbaum and show that its successive quotients are geometric realizations of explicit simplicial abelian groups. The filtration in weight t involves t-tuples of commuting automorphisms of projective R-modules. It remains to show that the Adams operations act appropriately on the filtration.
متن کاملIsomorphism Rigidity of Commuting Automorphisms
Let d > 1, and let (X,α) and (Y, β) be two zeroentropy Z-actions on compact abelian groups by d commuting automorphisms. We show that if all lower rank subactions of α and β have completely positive entropy, then any measurable equivariant map from X to Y is an affine map. In particular, two such actions are measurably conjugate if and only if they are algebraically conjugate.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03729-x