Compact operators in TRO’s

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

Compact Sets and Compact Operators

Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence {vn}n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this sequence will have a convergent subsequence, say {vk}k=1, which will still be unbounded. This sequence is Cauchy, so there is a positive integer K for which ‖v`− vm‖ ≤ 1/2 for all `...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2012-11356-5