Compactness properties of Sobolev imbeddings for rearrangement invariant norms
نویسندگان
چکیده
منابع مشابه
Extrapolation of Reduced Sobolev Imbeddings
We consider fractional Sobolev spaces with dominating mixed derivatives and prove generalizations of Trudinger’s limiting imbedding theorem.
متن کاملCriteria for Imbeddings of Sobolev-poincaré Type
Ω u dx and Ω ⊂ R is bounded and satisfies a uniform interior cone condition; by density of smooth functions (1.1) then holds for all functions in the Sobolev space W (Ω) consisting of all functions in L(Ω) whose distributional gradients belong to L(Ω). For 1 < p < n, inequality (1.1) was proved by Sobolev ([So1], [So2]); for p = 1, it is due to Gagliardo [G] and Nirenberg [N] (also see [M1]). W...
متن کاملOn the constants for some Sobolev imbeddings
We consider the imbedding inequality ‖ ‖ Lr(R d ) ≤ Sr,n,d ‖ ‖Hn(Rd); H n(R) is the Sobolev space (or Bessel potential space) of L2 type and (integer or fractional) order n. We write down upper bounds for the constants Sr,n,d, using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if (r = 2 ...
متن کاملOn weighted critical imbeddings of Sobolev spaces
Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that Lexp tα(χB) = Lexp tα(ρ) if and only if ρq ∈ Lq with some q > 1. Second, we consider the Sobolev space W ...
متن کاملDimension-free imbeddings of Sobolev spaces
We prove dimension-free imbedding theorems for Sobolev spaces using extrapolation means and the Gross logarithmic inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2006
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-06-04203-6