Companions of fields of rational and real algebraic numbers

نویسندگان

چکیده

Companions of the field rational numbers and a real-closed algebraic expansion are studied. The description existentially closed companions refers to study classical structures. general theory companions, built on basis Fraisse's classes in works A.T. Nurtazin, is included theories model theory. basic concept companion: two models same signature called if for any finite submodel one them, there an isomorphic other. This approach, applied specific structures their theories, provides new tools these objects. companion class real number fields reveals containing transcendental possibly elements with special properties polynomials defining elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

Questions about algebraic properties of real numbers

This paper is a survey of natural questions (with few answers) arising when one wants to study algebraic properties of real numbers, i.e., properties of real numbers w.r.t. {+, −, ×, >, ≥} in a constructive setting. Introduction This paper is a survey of natural questions (with few answers) arising when one wants to study algebraic properties of real numbers, i.e., properties of real numbers w....

متن کامل

Comparing Real Algebraic Numbers of Small Degree

We study polynomials of degree up to 4 over the rationals or a computable real subfield. Our motivation comes from the need to evaluate predicates in nonlinear computational geometry efficiently and exactly. We show a new method to compare real algebraic numbers by precomputing generalized Sturm sequences, thus avoiding iterative methods; the method, moreover handles all degenerate cases. Our f...

متن کامل

Construction of Real Algebraic Numbers in Coq

This paper shows a construction in Coq of the set of real algebraic numbers, together with a formal proof that this set has a structure of discrete Archimedean real closed field. This construction hence implements an interface of real closed field. Instances of such an interface immediately enjoy quantifier elimination thanks to a previous work. This work also intends to be a basis for the cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of mathematics and physics

سال: 2022

ISSN: ['2218-7987', '2409-5508']

DOI: https://doi.org/10.26577/ijmph.2022.v13.i2.09