Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index
نویسندگان
چکیده
This paper focus on the drought monitoring and forecasting for semi-arid region based various machine learning models SPI index. Drought phenomena are crucial role in agriculture drinking purposes area. In this study, Standardized Precipitation Index (SPI) was used to predicted future upper Godavari River basin, India. We have selected ten input combinations of ML model were prediction three timescales (i.e., -3, SPI-6, SPI-12). The historical data from 2000 2019 creation prediction, these datasets divided into training (75% data) testing (25% models. best subset regression method sensitivity analysis applied estimate most effective variables estimation 3, 6, 12. improved support vector using sequential minimal optimization (SVM-SMO) with kernel functions i.e., SMO-SVM poly kernel, Normalized PUK (Pearson Universal Kernel) RBF (radial basis function) developed SPI-3,6 12 months. accuracy compared statistical indicators root mean square error (RMSE), absolute (MAE), relative (RAE), squared (RRSE), correlation coefficient (r). results study area been showed that precisely SPI-3 (R2 = 0.819) SPI-12 0.968) values at Paithan station; 0.736) SPI-6 0.841) Silload station, respectively. is found 0.846) station 0.975) station. SVM-SMO observed, (i.e. SPI-12), while good both stations. ability algorithm successfully multiscale under climate changes. It can be helpful decision making water resource management tackle droughts central
منابع مشابه
assessment of the park- ang damage index for performance levels of rc moment resisting frames
چکیده هدف اصلی از طراحی لرزه ای تامین ایمنی جانی در هنگام وقوع زلزله و تعمیر پذیر بودن سازه خسارت دیده، پس از وقوع زلزله است. تجربه زلزله های اخیر نشان داده است که ساختمان های طراحی شده با آیین نامه های مبتنی بر نیرو از نظر محدود نمودن خسارت وارده بر سازه دقت لازم را ندارند. این امر سبب پیدایش نسل جدید آیین نامه های مبتنی بر عملکرد شده است. در این آیین نامه ها بر اساس تغییرشکل های غیرارتجاعی ...
15 صفحه اولImproved DAG SVM: A New Method for Multi-Class SVM Classification
In this paper, we present our method which is a performance improvement to the Directed Acyclic Graph Support Vector Machines (DAG SVM). It suggests a weighted multi-class classification technique which divides the input space into several subspaces. In the training phase of the technique, for each subspace, a DAG SVM is trained and its probability density function (pdf) is guesstimated. In the...
متن کاملVery Fast Kernel SVM under Budget Constraints
In this paper we propose a fast online Kernel SVM algorithm under tight budget constraints. We propose to split the input space using LVQ and train a Kernel SVM in each cluster. To allow for online training, we propose to limit the size of the support vector set of each cluster using different strategies. We show in the experiment that our algorithm is able to achieve high accuracy while having...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولVegetation Index Differencing for Broad-Scale Assessment of Productivity Under Prolonged Drought and Sequential High Rainfall Conditions
Spatially-explicit depictions of plant productivity over large areas are critical to monitoring landscapes in highly heterogeneous arid ecosystems. Applying radiometric change detection techniques we sought to determine whether: (1) differences between preand post-growing season spectral vegetation index values effectively identify areas of significant change in vegetation; and (2) areas of sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Management
سال: 2023
ISSN: ['0920-4741', '1573-1650']
DOI: https://doi.org/10.1007/s11269-023-03440-0