Completeness properties of locally quasi-convex groups
نویسندگان
چکیده
منابع مشابه
Completeness properties of locally quasi-convex groups
It is natural to extend the Grothendieck theorem on completeness, valid for locally convex topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By means of...
متن کاملQuasi-barrelled Locally Convex Spaces
1. R. E. Lane, Absolute convergence of continued fractions, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 904-913. 2. R. E. Lane and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380. 3. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172. 4. H. S....
متن کاملB -AND B - COMPLETENESS IN LOCALLY CONVEX ALGEBRAS AND THE E x THEOREM
Let E be a B-complete (B -complete) locally convex algebra and $ the topological direct sum of countably many copies of the scalar field with a jointly continuous algebra multiplication. It has been shown that E is also B-complete (B -complete) for componentwise multiplication on E . B-and Br-completeness of E , the unitization of E, and also of E x for other multiplications on E ...
متن کاملQuasi-Discrete Locally Compact Quantum Groups
Let A be a C *-algebra. Let A ⊗ A be the minimal C *-tensor product of A with itself and let M (A ⊗ A) be the multiplier algebra of A ⊗ A. A comultiplication on A is a non-degenerate *-homomorphism ∆ : A → M (A ⊗ A) satisfying the coassociativity law (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆ where ι is the identity map and where ∆ ⊗ ι and ι ⊗ ∆ are the unique extensions to M (A ⊗ A) of the obvious maps on A ⊗ A. We ...
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2001
ISSN: 0166-8641
DOI: 10.1016/s0166-8641(99)00187-x