Component selection in additive quantile regression models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Models for Quantile Regression

We describe some recent development of nonparametric methods for estimating conditional quantile functions using additive models with total variation roughness penalties. We focus attention primarily on selection of smoothing parameters and on the con

متن کامل

Additive models for quantile regression: Model selection and confidence bandaids

Additive models for conditional quantile functions provide an attractive framework for nonparametric regression applications focused on features of the response beyond its central tendency. Total variation roughness penalities can be used to control the smoothness of the additive components much as squared Sobelev penalties are used for classical L2 smoothing splines. We describe a general appr...

متن کامل

Graphical models via joint quantile regression with component selection

A graphical model is used for describing interrelationships among multiple variables. In many cases, the multivariate Gaussian assumption is made partly for its simplicity but the assumption is hardly met in actual applications. In order to avoid dependence on a rather strong assumption, we propose to infer the graphical model via joint quantile regression with component selection, since the co...

متن کامل

Model selection in quantile regression models

Lasso methods are regularization and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables (Park and Casella, 2008). A scale mixture of normal priors can also prov...

متن کامل

Bayesian semiparametric additive quantile regression

Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Statistical Society

سال: 2014

ISSN: 1226-3192

DOI: 10.1016/j.jkss.2014.01.002