Composite colloids and patterning
نویسندگان
چکیده
منابع مشابه
Electrokinetic concentration and patterning of colloids with a scanning laser.
Optically-based lab-on-a-chip systems have the distinct advantage of being dynamically controlled in real time, providing reconfigurable operations that can be tuned to perform a variety of tasks. This manuscript demonstrates the concentration of liquid-suspended microparticles using a focused near-infrared laser (980 nm) and a parallel-plate electrode system. The parallel-plate electrodes cons...
متن کاملColloids: Applications and Remaining Challenges
Using of colloids and polymeric microparticles are gradually increasing. It is observed that the positive effects of particles stems in both traditional applications such as column pickings, coatings and paints to more recent technologies in diagnostics, drug delivery and optical devices are well documented. This review focuses on importance of colloids and covers their applications on three le...
متن کاملColloids: Applications and Remaining Challenges
Using of colloids and polymeric microparticles are gradually increasing. It is observed that the positive effects of particles stems in both traditional applications such as column pickings, coatings and paints to more recent technologies in diagnostics, drug delivery and optical devices are well documented. This review focuses on importance of colloids and covers their applications on three le...
متن کاملElectrokinetic concentration, patterning, and sorting of colloids with thin film heaters.
Reliable and simple techniques for rapid assembly and patterning of colloid architectures advance the discovery and implementation of such nanomaterials. This work demonstrates rapid electrokinetic two-dimensional assembly of colloidal structures guided by the geometry of thin film heaters within a parallel-plate device. This system is designed to enable either independently addressable or mass...
متن کاملDirect patterning of composite biocompatible microstructures using microfluidics.
This study demonstrates a versatile and fast method for patterning three-dimensional (3D) monolithic microstructures made of multiple (up to 24 demonstrated) types of materials, all spatially aligned, inside a microchannel. This technique uses confocal scanning or conventional fluorescence microscopy to polymerize selected regions of a photocurable material, and microfluidics to automate the de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymer
سال: 2009
ISSN: 0032-3861
DOI: 10.1016/j.polymer.2009.01.056