Composite Quantile Regression for Varying Coefficient Models with Response Data Missing at Random

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially linear varying coefficient models with missing at random responses

This paper considers partially linear varying coefficient models when the response variable is missing at random. The paper uses imputation techniques to develop an omnibus specification test. The test is based on a simple modification of a Cramer von Mises functional that overcomes the curse of dimensionality often associated with the standard Cramer von Mises functional. The paper also consid...

متن کامل

Composite Quantile Regression for Nonparametric Model with Random Censored Data

The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the pro...

متن کامل

Quantile Regression in Partially Linear Varying Coefficient Models by Huixia

Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification...

متن کامل

Variable selection in quantile varying coefficient models with longitudinal data

In this paper, we develop a new variable selection procedure for quantile varying coefficient models with longitudinal data. The proposed method is based on basis function approximation and a class of group versions of the adaptive LASSOpenalty,which penalizes the Lγ norm of the within-group coefficients with γ ≥ 1. We show that with properly chosen adaptive group weights in the penalization, t...

متن کامل

Nonparametric Inference for Time-varying Coefficient Quantile Regression

The paper considers nonparametric inference for quantile regression models with time-varying coefficients. The errors and covariates of the regression are assumed to belong to a general class of locally stationary processes and are allowed to be cross-correlated. Simultaneous confidence tubes (SCT) and integrated squared difference tests (ISDT) are proposed for simultaneous nonparametric infere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11091065