Computational methods for martingale optimal transport problems
نویسندگان
چکیده
منابع مشابه
Martingale Optimal Transport
The original transport problem is to optimally move a pile of soil to an excavation. Mathematically, given two measures of equal mass, we look for an optimal map that takes one measure to the other one and also minimizes a given cost functional. Kantorovich relaxed this problem by considering a measure whose marginals agree with given two measures instead of a bijection. This generalization lin...
متن کاملMartingale Optimal Transport with Stopping
We solve the martingale optimal transport problem for cost functionals represented by optimal stopping problems. The measure-valued martingale approach developed in ArXiv: 1507.02651 allows us to obtain an equivalent infinitedimensional controller-stopper problem. We use the stochastic Perron’s method and characterize the finite dimensional approximation as a viscosity solution to the correspon...
متن کاملViscosity methods giving uniqueness for martingale problems
Let E be a complete, separable metric space and A be an operator on Cb(E). We give an abstract definition of viscosity sub/supersolution of the resolvent equation λu − Au = h and show that, if the comparison principle holds, then the martingale problem for A has a unique solution. Our proofs work also under two alternative definitions of viscosity sub/supersolution which might be useful, in par...
متن کاملMartingale optimal transport and robust hedging
The martingale optimal transport problem is motivated by model-independent bounds for the pricing and hedging exotic options. In the simplest one-period model, the dual formulation of the robust superhedg-ing cost differs from the standard optimal transport problem by the presence of a martingale constraint on the set of coupling measures. The one-dimensional Brenier theorem has a natural exten...
متن کاملMartingale Optimal Transport in the Skorokhod Space
The dual representation of the martingale optimal transport problem in the Skorokhod space of multi dimensional càdlàg processes is proved. The dual is a minimization problem with constraints involving stochastic integrals and is similar to the Kantorovich dual of the standard optimal transport problem. The constraints are required to hold for very path in the Skorokhod space. This problem has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2019
ISSN: 1050-5164
DOI: 10.1214/19-aap1481