Computations of Fractional Differentiation by Lagrange Interpolation Polynomial and Chebyshev Polynomial
نویسندگان
چکیده
منابع مشابه
Multivariate polynomial interpolation on Lissajous-Chebyshev nodes
In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...
متن کاملSparse polynomial interpolation in Chebyshev bases
We study the problem of reconstructing a sparse polynomial in a basis of Chebyshev polynomials (Chebyshev basis in short) from given samples on a Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev basis, if it can be represented by a linear combination of M Chebyshev polynomials. For a polynomial with known and unknown Chebyshev sparsity, respectively, we present efficie...
متن کاملCounterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation
We apply multivariate Lagrange interpolation to synthesizing polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore genera...
متن کاملConstrained Jacobi Polynomial and Constrained Chebyshev Polynomial
In this paper, we present the constrained Jacobi polynomial which is equal to the constrained Chebyshev polynomial up to constant multiplication. For degree n = 4, 5, we find the constrained Jacobi polynomial, and for n ≥ 6, we present the normalized constrained Jacobi polynomial which is similar to the constrained Chebyshev polynomial.
متن کاملSecure Message Transmission using Lagrange Polynomial Interpolation and Huffman Coding
In this paper, an algorithm for secure transmission of message is proposed based on Lagrange's interpolation. The message is viewed as a polynomial of degree n where n is kept secret and transmitted to the receiver's side using the concept of a digital envelope. As any nth degree polynomial is uniquely determined by n+1 points, n +1 points are communicated to the other side, where the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Technology Journal
سال: 2012
ISSN: 1812-5638
DOI: 10.3923/itj.2012.557.559