Computer Dynamic Modelling of Communal Sewage Networks
نویسندگان
چکیده
منابع مشابه
Hydraulic modelling of sewage exfiltration.
Exfiltration of waste water in sewer networks represents a potential danger for the soil and the aquifer. Various modelling approaches have been proposed to quantify sewerage exfiltration and its spatial and temporal variation. Common models are based on the law of Darcy, extended by a more or less detailed consideration of the expansion of leaks, the characteristics of the soil and the colmati...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولHTCPNs-Based Modelling and Evaluation of Dynamic Computer Cluster Reconfiguration
An extension of HTCPNs-based software tool for Internet systems modelling and evaluation has been proposed in the paper. After the extension the tool provides new possibilities for modelling and analysis of dynamic cluster reconfiguration algorithm. Some implementation details of the algorithm has been presented. The algorithm has been preliminary assessed by simulation.
متن کاملModelling slowly changing dynamic gene-regulatory networks
Dynamic gene-regulatory networks are complex since the number of potential components involved in the system is very large. Estimating dynamic networks is an important task because they compromise valuable information about interactions among genes. Graphical models are a powerful class of models to estimate conditional independence among random variables, e.g. interactions in dynamic systems. ...
متن کاملDynamic Bayesian Networks for Brain-Computer Interfaces
We describe an approach to building brain-computer interfaces (BCI) based on graphical models for probabilistic inference and learning. We show how a dynamic Bayesian network (DBN) can be used to infer probability distributions over brainand body-states during planning and execution of actions. The DBN is learned directly from observed data and allows measured signals such as EEG and EMG to be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Automation, Mobile Robotics and Intelligent Systems
سال: 2014
ISSN: 1897-8649,2080-2145
DOI: 10.14313/jamris_4-2014/37