Computing motivic zeta functions on log smooth models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motivic Igusa Zeta Functions

Let p be a prime number and let K be a finite extension of Qp. Let R be the valuation ring of K, P the maximal ideal of R, and K̄ = R/P the residue field of K. Let q denote the cardinality of K̄, so K̄ ≃ Fq. For z in K, let ord z denote the valuation of z, and set |z| = q . Let f be a non constant element of K[x1, . . . , xm]. The p-adic Igusa local zeta function Z(s) associated to f (relative to ...

متن کامل

Motivic Zeta Functions of Motives

LetM be a tensor category with coefficients in a fieldK of characteristic 0, that is, a K-linear pseudo-abelian symmetric monoidal category such that the tensor product ⊗ of M is bilinear. Then symmetric and exterior powers of an object M ∈ M make sense, by using appropriate projectors relative to the action of the symmetric groups on tensor powers of M . One may therefore introduce the zeta fu...

متن کامل

Igusa zeta functions and motivic generating series

Proefschrift ingediend tot het behalen van de graad van Doctor in de Wetenschappen december 2004 ii Introduction Let f be a polynomial in Z[x], x = (x 1 ,. .. , x m), defining a hypersurface X 0 in A m Z. Igusa's Monodromy Conjecture predicts an intriguing relationship between the arithmetic properties of f , and the topology of the (not necessarily reduced) complex hypersurface X 0 = X 0 × Spe...

متن کامل

Motivic Zeta Functions for Curve Singularities

Let X be a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristic p big enough. Given a local ring OP,X at a rational singular point P of X, we attached a universal zeta function which is a rational function and admits a functional equation if OP,X is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincaré se...

متن کامل

Zeta Functions for Curves and Log Canonical Models

The topological zeta function and Igusa's local zeta function are respectively a geometrical invariant associated to a complex polynomial f and an arithmetical invariant associated to a polynomial f over a p{adic eld. When f is a polynomial in two variables we prove a formula for both zeta functions in terms of the so{called log canonical model of f ?1 f0g in A 2. This result yields moreover a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2019

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-019-02342-5