Computing reflection length in an affine Coxeter group
نویسندگان
چکیده
منابع مشابه
Bounding Reflection Length in an Affine Coxeter Group
In any Coxeter group, the conjugates of elements in the standard minimal generating set are called reflections and the minimal number of reflections needed to factor a particular element is called its reflection length. In this article we prove that the reflection length function on an affine Coxeter group has a uniform upper bound. More precisely we prove that the reflection length function on...
متن کاملAffine Permutations and an Affine Coxeter Monoid
In this expository paper, we describe results on pattern avoidance arising from the affine Catalan monoid. The schema of affine codes as canonical decompositions in conjunction with two-row moves is detailed, and then applied in studying the Catalan quotient of the 0-Hecke monoid. We prove a conjecture of Hanusa and Jones concerning periodicity in the number of fully-commutative affine permutat...
متن کاملReflection Centralizers in Coxeter Groups
We give a new proof of Brink’s theorem that the nonreflection part of a reflection centralizer in a Coxeter group is free, and make several refinements. In particular we give an explicit finite set of generators for the centralizer and a method for computing the Coxeter diagram for its reflection part. In many cases, our method allows one to compute centralizers quickly in one’s head. We also d...
متن کاملThe distribution of descents and length in a Coxeter group
We give a method for computing the q-Eulerian distribution W (t, q) = w∈W t des(w) q l(w) as a rational function in t and q, where (W, S) is an arbitrary Coxeter system, l(w) is the length function in W , and des(w) is the number of simple reflections s ∈ S for which l(ws) < l(w). Using this we compute generating functions encompassing the q-Eulerian distributions of the classical infinite fami...
متن کاملReflection subgroups of Coxeter groups
We use geometry of Davis complex of a Coxeter group to investigate finite index reflection subgroups of Coxeter groups. The main result is the following: if G is an infinite indecomposable Coxeter group and H ⊂ G is a finite index reflection subgroup then the rank of H is not less than the rank of G. This generalizes results of [7]. We also describe some properties of the nerves of the group an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2018
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7472