Computing the singular behavior of solutions of Cauchy singular integral equations with variable coefficients
نویسندگان
چکیده
منابع مشابه
An effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملMultilinear Singular Integral Operators with Variable Coefficients
Some recent results for bilinear or multilinear singular integrals operators are presented. The focus is on some of the results that can be viewed as natural counterparts of classical theorems in Calderón-Zygmund theory, adding to the already existing extensive literature in the subject. In particular, two different classes of operators that can be seen as bilinear counterparts of linear Calder...
متن کاملSolutions for Singular Volterra Integral Equations
0 gi(t, s)[Pi(s, u1(s), u2(s), · · · , un(s)) + Qi(s, u1(s), u2(s), · · · , un(s))]ds, t ∈ [0, T ], 1 ≤ i ≤ n where T > 0 is fixed and the nonlinearities Pi(t, u1, u2, · · · , un) can be singular at t = 0 and uj = 0 where j ∈ {1, 2, · · · , n}. Criteria are offered for the existence of fixed-sign solutions (u∗1, u ∗ 2, · · · , u ∗ n) to the system of Volterra integral equations, i.e., θiu ∗ i (...
متن کاملSelf-adjointness of Cauchy Singular Integral Operator
We extend Krupnik’s criterion of self-adjointness of the Cauchy singular integral operator to the case of finitely connected domains. The main aim of the paper is to present a new approach for proof of the criterion. Let G+ be a finitely connected domain bounded by the rectifiable curve C = ∂G+, G− = C \ clos G+ and ∞ ∈ G−. Suppose also that w(z), z ∈ C is a nonnegative weight such that w(z) 6≡...
متن کاملSimple Quadrature for Singular Integral Equations with Variable Coeecients
A simple quadrature rule for the solution of second-kind singular integral equations with variable coeecients is constructed and investigated. This method to calculate numerically singular integrals uses classical Jacobi quadra-tures. The major advantage is its simplicity. The proposed method is conver-gent under a reasonable assumption on the smoothness of the solution. It has a higher converg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1997
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(97)00035-9