Confidence Intervals for the Risk Ratio Using Double Sampling with Misclassified Binomial Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence Intervals for the Risk Ratio Using Double Sampling with Misclassified Binomial Data

We derive three likelihood-based confidence intervals for the risk ratio of two proportion parameters using a double sampling scheme for misclassified binomial data. The risk ratio is also known as the relative risk. We obtain closed-form maximum likelihood estimators of the model parameters by maximizing the full-likelihood function. Moreover, we develop three confidence intervals: a naive Wal...

متن کامل

Comparison of five introduced confidence intervals for the binomial proportion

So far many confidence intervals were introduced for the binomial proportion. In this paper, our purpose is comparing five well known based on their exact confidence coefficient and average coverage probability.

متن کامل

Simultaneous confidence intervals for comparing binomial parameters.

SUMMARY To compare proportions with several independent binomial samples, we recommend a method of constructing simultaneous confidence intervals that uses the studentized range distribution with a score statistic. It applies to a variety of measures, including the difference of proportions, odds ratio, and relative risk. For the odds ratio, a simulation study suggests that the method has cover...

متن کامل

Confidence intervals for a binomial proportion.

Thirteen methods for computing binomial confidence intervals are compared based on their coverage properties, widths and errors relative to exact limits. The use of the standard textbook method, x/n +/- 1.96 square root of [(x/n)(1-x/n)/n], or its continuity corrected version, is strongly discouraged. A commonly cited rule of thumb stating that alternatives to exact methods may be used when the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Data Science

سال: 2021

ISSN: 1680-743X,1683-8602

DOI: 10.6339/jds.201110_09(4).0004