Configurations of infinitely near points

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Configurations of infinitely near points

We present a survey of some aspects and new results on configurations, i.e. disjoint unions of constellations of infinitely near points, local and global theory, with some applications and results on generalized Enriques diagrams, singular foliations, and linear systems defined by clusters. 1991 Mathematics Subject Classification: 14C20, 14M25, 13B22.

متن کامل

The Steiner problem for infinitely many points

Let A be a given compact subset of the euclidean space. We consider the problem of finding a compact connected set S of minimal 1dimensional Hausdorff measure, among all compact connected sets containing A. We prove that when A is a finite set any minimizer is a finite tree with straight edges, thus recovery the classical Steiner Problem. Analogously, in the case when A is countable, we prove t...

متن کامل

Affine Curves with Infinitely Many Integral Points

Let C ⊂ An be an irreducible affine curve of (geometric) genus 0 defined by a finite family of polynomials having integer coefficients. In this note we give a necessary and sufficient condition for C to possess infinitely many integer points, correcting a statement of J. H. Silverman (Theoret. Comput. Sci., 2000). Let C be an irreducible affine curve of (geometric) genus 0 in the affine space A...

متن کامل

Horizontal configurations of points in link complements

For any tangle T (up to isotopy) and integer k ≥ 1 we construct a group F (T ) (up to isomorphism). It is the fundamental group of the configuration space of k points in a horizontal plane avoiding the tangle, provided the tangle is in what we call Heegaard position. This is analogous to the first half of Lawrence’s homology construction of braid group representations. We briefly discuss the se...

متن کامل

Koszul Configurations of Points in Projective Spaces

We prove a new criterion for the homogeneous coordinate ring of a finite set of points in Pn to be Koszul. Like the well known criterion due to Kempf [7] it involves only incidence conditions on linear spans of subsets of a given set. We also give a sufficient condition for the Koszul property to be preserved when passing to a subset of a finite set of points in Pn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The São Paulo Journal of Mathematical Sciences

سال: 2009

ISSN: 2316-9028,1982-6907

DOI: 10.11606/issn.2316-9028.v3i1p115-160