Conjugation involutions on homotopy complex projective spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces

We investigate the rational homotopy classification problem for the components of some function spaces with Sn or cPn as target space.

متن کامل

Smooth S Actions on Homotopy Complex Projective Spaces and Related Topics

0. Introduction and motivation. We begin by listing some questions and remarks which establish the theme of this paper. 1. Which cobordism classes of oriented manifolds admit nontrivial circle actions? Answer: Atiyah-Hirzebruch [4]: For a compact oriented manifold X of dim 4k, its sd genus vanishes iff there is a multiple mX which is cobordant to X with W2(Y) = 0, which admits a nontrivial circ...

متن کامل

Instanton sheaves on complex projective spaces

We study a class of torsion-free sheaves on complex projective spaces which generalize the much studied mathematical instanton bundles. Instanton sheaves can be obtained as cohomologies of linear monads and are shown to be semistable if its rank is not too large, while semistable torsion-free sheaves satisfying certain cohomological conditions are instanton. We also study a few examples of modu...

متن کامل

Free Involutions on Homotopy (4&+3)-spheres

In [ l ] Browder and Livesay defined an invariant a(Tt 2 ) £ 8 Z of a free differentiate involution T of a homotopy (4&+3)-sphere 2 , k>0. I t is the precise obstruction to finding an invariant (4&+2)sphere of the involution. In [5] and [ô] Medrano showed how to construct free involutions with arbitrary Browder-Livesay invariant on some homotopy (4&+3) -spheres and hence that there exist infini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japanese journal of mathematics. New series

سال: 1986

ISSN: 0289-2316,1861-3624

DOI: 10.4099/math1924.12.1