Consistency of regularized spectral clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistency of Spectral Clustering

Consistency is a key property of all statistical procedures analyzing randomly sampled data. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of the popular family of spectral clustering algorithms, which clusters the data with the help of eigenvectors of graph Laplacian matrices. We develop new meth...

متن کامل

Co-regularized Multi-view Spectral Clustering

In many clustering problems, we have access to multiple views of the data each of which could be individually used for clustering. Exploiting information from multiple views, one can hope to find a clustering that is more accurate than the ones obtained using the individual views. Often these different views admit same underlying clustering of the data, so we can approach this problem by lookin...

متن کامل

Co-regularized Spectral Clustering with Multiple Kernels

We propose a co-regularization based multiview spectral clustering algorithm which enforces the clusterings across multiple views to agree with each-other. Since each view can be used to define a similarity graph over the data, our algorithm can also be considered as learning with multiple similarity graphs, or equivalently with multiple kernels. We propose an objective function that implicitly...

متن کامل

Neighborhood Co-regularized Multi-view Spectral Clustering of Microbiome Data

In many unsupervised learning problems data can be available in different representations, often referred to as views. By leveraging information from multiple views we can obtain clustering that is more robust and accurate compared to the one obtained via the individual views. We propose a novel algorithm that is based on neighborhood co-regularization of the clustering hypotheses and that sear...

متن کامل

Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel

Spectral clustering is a fast and popular algorithm for finding clusters in networks. Recently, Chaudhuri et al. [1] and Amini et al. [2] proposed inspired variations on the algorithm that artificially inflate the node degrees for improved statistical performance. The current paper extends the previous statistical estimation results to the more canonical spectral clustering algorithm in a way t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2011

ISSN: 1063-5203

DOI: 10.1016/j.acha.2010.09.002