Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order
نویسندگان
چکیده
منابع مشابه
Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules
In this paper we proof the existence of digitally shifted polynomial lattice rules which achieve strong tractability results for Sobolev spaces of arbitrary high smoothness. The convergence rate is shown to be best possible up to a given degree of smoothness of the integrand. Indeed we even show the existence of polynomial lattice rules which automatically adjust themselves to the smoothness of...
متن کاملConstruction algorithms for higher order polynomial lattice rules
Higher order polynomial lattice point sets are special types of digital higher order nets which are known to achieve almost optimal convergence rates when used in a quasi-Monte Carlo algorithm to approximate high-dimensional integrals over the unit cube. Recently it has been shown that higher order polynomial lattice point sets of “good” quality must exist. However, it was not shown how to cons...
متن کاملConstruction Algorithms for Generalized Polynomial Lattice Rules
Recently, generalized digital nets were introduced and shown to achieve almost optimal convergence rates when used in a quasi-Monte Carlo algorithm to approximate high-dimensional integrals over the unit cube. Since their inception, one method of constructing generalized digital nets from classical digital nets has been known. However, the desirable features of generalized digital nets motivate...
متن کاملConstruction algorithms for polynomial lattice rules for multivariate integration
We introduce a new construction algorithm for digital nets for integration in certain weighted tensor product Hilbert spaces. The first weighted Hilbert space we consider is based on Walsh functions. Dick and Pillichshammer calculated the worst-case error for integration using digital nets for this space. Here we extend this result to a special construction method for digital nets based on poly...
متن کاملFast Construction of Good Lattice Rules
We develop a fast algorithm for the construction of good rank-1 lattice rules which are a quasi-Monte Carlo method for the approximation of multivariate integrals. A popular method to construct such rules is the component-by-component algorithm which is able to construct good lattice rules that achieve the optimal theoretical rate of convergence. The construction time of this algorithm is O(sn)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Foundations of Computational Mathematics
سال: 2014
ISSN: 1615-3375,1615-3383
DOI: 10.1007/s10208-014-9226-8