Construction of Optimal Quadrature Formulas Exact for Exponentional-trigonometric Functions by Sobolev’s Method

نویسندگان

چکیده

The paper studies Sard’s problem on construction of optimal quadrature formulas in the space W 2 (,0) by Sobolev’s method. This consists two parts: first calculating norm error functional and then finding minimum this coefficients formulas. Here is calculated with help extremal function. Then using method Lagrange multipliers system linear equations for obtained, moreover existence uniqueness solution are discussed. Next, discrete analogue Dm(hβ) differential operator $${{{d^{2m}}} \over {d{x^{2m}}}} - 1$$ constructed. Further, , which based Dm(hβ), described. m = 1 3 exact to exponential-trigonometric functions obtained. Finally, at end rate convergence (3,0) cases presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Stochastic Quadrature Formulas For Convex Functions

We study optimal stochastic (or Monte Carlo) quadrature formulas for convex functions. While nonadaptive Monte Carlo methods are not better than deterministic methods we prove that adaptive Monte Carlo methods are much better. Abstract. We study optimal stochastic (or Monte Carlo) quadrature formulas for convex functions. While nonadaptive Monte Carlo methods are not better than deter-ministic ...

متن کامل

Positive trigonometric quadrature formulas and quadrature on the unit circle

We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...

متن کامل

Numerical Construction of Gaussian Quadrature Formulas for

Most nonclassical Gaussian quadrature rules are difficult to construct because of the loss of significant digits during the generation of the associated orthogonal polynomials. But, in some particular cases, it is possible to develop stable algorithms. This is true for at least two well-known integrals, namely ¡l-(Loêx)-x°f(x)dx and ¡Ô Em(x)f(x)-dx. A new approach is presented, which makes use ...

متن کامل

Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree

We study cubature formulas for d-dimensional integrals with a high trigonometric degree. To obtain a trigonometric degreè in dimension d, we need about d ` =`! function values if d is large. Only a small number of arithmetical operations is needed to construct the cubature formulas using Smolyak's technique. We also compare diierent methods to obtain formulas with high trigonometric degree. Abs...

متن کامل

Quadrature Formulas for Multivariate Convex Functions

We study optimal quadrature formulas for convex functions in several variables. In particular, we answer the following two questions: Are adaptive methods better than nonadaptive ones? And: Are randomized (or Monte Carlo) methods better than deterministic methods?

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Sinica

سال: 2021

ISSN: ['1439-7617', '1439-8516']

DOI: https://doi.org/10.1007/s10114-021-9506-6