Construction of Some Sets of Mutually Orthogonal Latin Squares
نویسندگان
چکیده
منابع مشابه
Maximal sets of mutually orthogonal Latin squares
Maximal sets of s mutually orthogonal Latin squares of order v are constructed for in nitely many new pairs (s; v). c © 1999 Published by Elsevier Science B.V. All rights reserved
متن کاملMore mutually orthogonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.
متن کاملSome Constructions of Mutually Orthogonal Latin Squares and Superimposed Codes
Superimposed codes is a special combinatorial structure that has many applications in information theory, data communication and cryptography. On the other hand, mutually orthogonal latin squares is a beautiful combinatorial object that has deep connection with design theory. In this paper, we draw a connection between these two structures. We give explicit construction of mutually orthogonal l...
متن کاملPermutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal latin squares
We present a general technique for obtaining permutation polynomials over a finite field from permutations of a subfield. By applying this technique to the simplest classes of permutation polynomials on the subfield, we obtain several new families of permutation polynomials. Some of these have the additional property that both f(x) and f(x) + x induce permutations of the field, which has combin...
متن کاملOn the Construction of Sets of Mutually Orthogonal Latin Squares and the Falsity of a Conjecture of Eulero)
then it is known, MacNeish [16] and Mann [17] that there exists a set of at least n(v) mutually orthogonal Latin squares (m.o.l.s.) of order v. It seemed plausible that n(v) is also the maximum possible number of m.o.l.s. of order v. This would have implied the correctness of Euler's [13] conjecture about the nonexistence of two orthogonal Latin squares of order v when v = 2 (mod 4), since n(v)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1959
ISSN: 0002-9939
DOI: 10.2307/2033627