Constructive predicate logic with strong negation and model theory.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructive Logic with Strong Negation as a Substructural Logic

Gentzen systems are introduced for Spinks and Veroff’s substructural logic corresponding to constructive logic with strong negation, and some logics in its vicinity. It has been shown by Spinks and Veroff in [9], [10] that the variety of Nelson algebras, the algebras of constructive logic with strong negation N, is term-equivalent to a certain variety of bounded commutative residuated lattices ...

متن کامل

Slaney’s Logic F∗∗ Is Constructive Logic with Strong Negation

In [19] Slaney et al. introduced a little known deductive system F∗∗ in connection with the problem of the indeterminacy of future contingents. The main result of this paper shows that, up to definitional equivalence, F∗∗ has a familiar description: it is precisely Nelson’s constructive logic with strong negation [25].

متن کامل

Topos Based Semantic for Constructive Logic with Strong Negation

The theory of elementary toposes plays the fundamental role in the categorial analysis of the intuitionistic logic. The main theorem of this theory uses the fact that sets E(A,Ω) (for any object A of a topos E) are Heyting algebras with operations defined in categorial terms. More exactly, subobject classifier true: 1 → Ω permits us define truth-morphism on Ω and operations in E(A,Ω) are define...

متن کامل

Semi-intuitionistic Logic with Strong Negation

There is a well known interplay between the study of algebraic varieties and propositional calculus of various logics. Prime examples of this are boolean algebras and classical logic, and Heyting algebras and intuitionistic logic. After the class of Heyting algebras was generalized to the semi-Heyting algebras by H. Sankappanavar in [San08], its logic counterpart was developed by one of us in [...

متن کامل

The Basic Constructive Logic for Negation-Consistency

In this paper, consistency is understood in the standard way, i.e. as the absence of a contradiction. The basic constructive logic BKc4, which is adequate to this sense of consistency in the ternary relational semantics without a set of designated points, is defined. Then, it is shown how to define a series of logics by extending BKc4 up to minimal intuitionistic logic. All logics defined in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1987

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1093637767