Contact guidance requires spatial control of leading-edge protrusion
نویسندگان
چکیده
منابع مشابه
Contact guidance requires spatial control of leading-edge protrusion
In vivo, geometric cues from the extracellular matrix (ECM) are critical for the regulation of cell shape, adhesion, and migration. During contact guidance, the fibrillar architecture of the ECM promotes an elongated cell shape and migration along the fibrils. The subcellular mechanisms by which cells sense ECM geometry and translate it into changes in shape and migration direction are not unde...
متن کاملContact Angle at the Leading Edge Controls Cell Protrusion Rate
Plasma membrane tension and the pressure generated by actin polymerization are two antagonistic forces believed to define the protrusion rate at the leading edge of migrating cells [1-5]. Quantitatively, resistance to actin protrusion is a product of membrane tension and mean local curvature (Laplace's law); thus, it depends on the local geometry of the membrane interface. However, the role of ...
متن کاملMechanisms of leading edge protrusion in interstitial migration
While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neu...
متن کاملA mechanism of leading-edge protrusion in the absence of Arp2/3 complex
Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast ...
متن کاملWeak force stalls protrusion at the leading edge of the lamellipodium.
Protrusion, the first step of cell migration, is driven by actin polymerization coupled to adhesion at the cell's leading edge. Polymerization and adhesive forces have been estimated, but the net protrusion force has not been measured accurately. We arrest the leading edge of a moving fish keratocyte with a hydrodynamic load generated by a fluid flow from a micropipette. The flow arrests protru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology of the Cell
سال: 2017
ISSN: 1059-1524,1939-4586
DOI: 10.1091/mbc.e16-11-0769