Continuity properties of law-invariant (quasi-)convex risk functions on L ∞
نویسندگان
چکیده
منابع مشابه
Continuity properties of law - invariant ( quasi - ) convex risk functions on L ∞
We study continuity properties of law-invariant (quasi-)convex functions f : L∞( ,F,P) → (−∞,∞] over a non-atomic probability space ( ,F,P). This is a supplementary note to Jouini et al. (Adv Math Econ 9:49–71, 2006).
متن کاملSubgradients of Law-Invariant Convex Risk Measures on L
We introduce a generalised subgradient for law-invariant closed convex risk measures on L and establish its relationship with optimal risk allocations and equilibria. Our main result gives sufficient conditions ensuring a non-empty generalised subgradient.
متن کاملLaw invariant risk measures on L∞(Rd)
Kusuoka (2001) has obtained explicit representation theorems for comonotone risk measures and, more generally, for law invariant risk measures. These theorems pertain, like most of the previous literature, to the case of scalar-valued risks. Jouini-Meddeb-Touzi (2004) and Burgert-Rüschendorf (2006) extended the notion of risk measures to the vector-valued case. Recently Ekeland-Galichon-Henry (...
متن کاملSubgradients of Law-Invariant Convex Risk Measures on L1∗
We introduce a generalised subgradient for law-invariant closed convex risk measures on L and establish its relationship with optimal risk allocations and equilibria. Our main result gives sufficient conditions ensuring a non-empty generalised subgradient.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Financial Economics
سال: 2010
ISSN: 1862-9679,1862-9660
DOI: 10.1007/s11579-010-0026-x