Continuous Dependence on a Parameter of Exponential Attractors for Nonclassical Diffusion Equations
نویسندگان
چکیده
منابع مشابه
Uniform Attractors for Non-autonomous Nonclassical Diffusion Equations on R
where ε ∈ [0, 1], the nonlinearity f and the external force g satisfy some certain conditions specified later. This equation is known as the nonclassical diffusion equation when ε > 0, and the reaction-diffusion equation when ε = 0. Nonclassical diffusion equation arises as a model to describe physical phenomena, such as non-Newtonian flows, soil mechanic, and heat conduction (see, e.g., [1, 7,...
متن کاملPullback Attractors for Nonclassical Diffusion Equations in Noncylindrical Domains
The existence and uniqueness of a variational solution are proved for the following nonautonomous nonclassical diffusion equation ut − εΔut − Δu f u g x, t , ε ∈ 0, 1 , in a noncylindrical domain with homogeneous Dirichlet boundary conditions, under the assumption that the spatial domains are bounded and increase with time. Moreover, the nonautonomous dynamical system generated by this class of...
متن کاملPullback Exponential Attractors for Nonautonomous Reaction-Diffusion Equations
Under the assumption that g t ( ) is translation bounded in loc L R L 4 4 ( ; ( )) Ω , and using the method developed in [3], we prove the existence of pullback exponential attractors in H 1 0 ( ) Ω for nonlinear reaction diffusion equation with polynomial growth nonlinearity( p 2 ≥ is arbitrary).
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملContinuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations
We develop a general framework for finding error estimates for convection-diffusion equations with nonlocal, nonlinear, and possibly degenerate diffusion terms. The equations are nonlocal because they involve fractional diffusion operators that are generators of pure jump Lévy processes (e.g. the fractional Laplacian). As an application, we derive continuous dependence estimates on the nonlinea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2020
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2020/1025457