Continuous Training and Deployment of Deep Learning Models

نویسندگان

چکیده

Abstract Deep Learning (DL) has consistently surpassed other Machine methods and achieved state-of-the-art performance in multiple cases. Several modern applications like financial recommender systems require models that are constantly updated with fresh data. The prominent approach for keeping a DL model is to trigger full retraining from scratch when enough new data available. However, large complex time-consuming compute-intensive. This makes costly, wasteful, slow. In this paper, we present an continuously train deploy models. First, enable continuous training through proactive combines samples of historical streaming Second, deployment gradient sparsification allows us send small percentage the updates per iteration. Our experimental results LeNet5 on MNIST CIFAR-10 show keeps comparable—if not superior—performance at fraction time. Combined sparsification, sparse enables very fast deployed arbitrarily sparsity, reducing communication iteration up four orders magnitude, minimal—if any—losses quality. Sparse training, however, comes price; it incurs overhead depends size increases time by factors ranging 1.25 3 our experiments. Arguably, price pay successfully enabling

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Learning of Human Activity Models using Deep Nets

Expt No. Comments 1. Page: 2 Fig. 1 Parameters sensitivity analysis on UCF11 dataset. 2. Page: 3 Fig. 2 Parameters sensitivity analysis on VIRAT dataset. 3. Page: 4 Fig. 3 Advantage of using deep learning. 4. Page: 5 Fig. 4 Evaluation of continuous learning on some individual test instances of KTH dataset. 5. Page: 6 Fig. 5 Evaluation of continuous learning on some individual test instances of ...

متن کامل

Continuous Learning of Human Activity Models Using Deep Nets

Learning activity models continuously from streaming videos is an immensely important problem in video surveillance, video indexing, etc. Most of the research on human activity recognition has mainly focused on learning a static model considering that all the training instances are labeled and present in advance, while in streaming videos new instances continuously arrive and are not labeled. I...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Datenbank-spektrum

سال: 2021

ISSN: ['1618-2162', '1610-1995']

DOI: https://doi.org/10.1007/s13222-021-00386-8