Contractions with polynomial characteristic functions I. Geometric approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Interpretation of the Characteristic Polynomial of Reflection Arrangements

We consider projections of points onto fundamental chambers of finite real reflection groups. Our main result shows that for groups of type An, Bn, and Dn, the coefficients of the characteristic polynomial of the reflection arrangement are proportional to the spherical volumes of the sets of points that are projected onto faces of a given dimension. We also provide strong evidence that the same...

متن کامل

Characteristic Polynomial

A [ An−1 + p1A n−2 + · · ·+ pn−1 In ] = −pn In . Since A is nonsingular, pn = (−1)n det(A) 6= 0; thus the result follows. Newton’s Identity. Let λ1, λ2, . . . , λn be the roots of the polynomial K(λ) = λ + p1λ n−1 + p2λ n−2 + · · · · · ·+ pn−1λ+ pn. If sk = λ k 1 + λ k 2 + · · ·+ λn, then pk = − 1 k (sk + sk−1 p1 + sk−2 p2 + · · ·+ s2 pk−2p1 + s1 pk−1) . Proof. From K(λ) = (λ − λ1)(λ − λ2) . . ...

متن کامل

SIMULATION FUNCTIONS AND INTERPOLATIVE CONTRACTIONS

In this manuscript, we consider the interpolative contractions mappings via simulation func-tions in the setting of complete metric space. We also express an illustrative example to show the validity of our presented results.

متن کامل

Finite Contractions of Graphs with Polynomial Growth

Let X be a locally finite, vertex-transitive, infinite graph with polynomial growth. Then there exists a quotient group of Aut(X) which contains a finitely generated nilpotent subgroup N which has the same growth rate as X. We show that X contains a subgraph which is finitely contractible onto the h-dimensional lattice, where h is the Hirsch number of N . ∗Supported by FWF (Austria) grant No. P...

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2012

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2012-05450-x