Contravariantly finite subcategories closed under predecessors
نویسندگان
چکیده
منابع مشابه
The Homological Theory of Contravariantly Finite Subcategories:
Let C be an abelian or exact category with enough projectives and let P be the full subcategory of projective objects of C . We consider the stable category C/P modulo projectives, as a left triangulated category [14], [36]. Then there is a triangulated category S(C/P) associated to C/P, which is universal in the following sense. There exists an exact functor S : C/P -t S(C/P) such that any exa...
متن کاملContravariantly Finite Resolving Subcategories over Commutative Rings
Contravariantly finite resolving subcategories of the category of finitely generated modules have been playing an important role in the representation theory of algebras. In this paper we study contravariantly finite resolving subcategories over commutative rings. The main purpose of this paper is to classify contravariantly finite resolving subcategories over a henselian Gorenstein local ring;...
متن کاملAbelian Subcategories Closed under Extensions: K-theory and Decompositions
In this paper we study wide subcategories. A full subcategory of R-modules is said to be wide if it is abelian and closed under extensions. Hovey [Hov01] gave a classification of wide subcategories of finitely presented modules over regular coherent rings in terms of certain specialisation closed subsets of Spec(R). We use this classification theorem to study K-theory and “Krull-Schmidt” decomp...
متن کاملCartesian closed subcategories of topological fuzzes
A category $mathbf{C}$ is called Cartesian closed provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$ of all topological fuzzes is both complete and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this cat...
متن کاملExtensions of covariantly finite subcategories
Gentle and Todorov proved that in an abelian category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. We give an example to show that Gentle–Todorov’s theorem may fail in an arbitrary abelian category; however we prove a triangulated version of Gentle–Todorov’s theorem which holds for arbitrary triangulated categories; we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2009
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2009.05.012