Convergence Analysis of the PML Method for Time-Domain Electromagnetic Scattering Problems
نویسندگان
چکیده
منابع مشابه
Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method
متن کامل
A simple preconditioned domain decomposition method for electromagnetic scattering problems
We present a domain decomposition method (DDM) devoted to the iterative solution of time-harmonic electromagnetic scattering problems, involving large and resonant cavities. This DDM uses the electric field integral equation (EFIE) for the solution of Maxwell problems in both interior and exterior subdomains, and we propose a simple preconditioner for the global method, based on the single laye...
متن کاملFictitious Domain Method for Unsteady Problems: Application to Electromagnetic Scattering
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملConvergence of the Time-domain Perfectly Matched Layer Method for Acoustic Scattering Problems
In this paper we establish the stability and convergence of the time-domain perfectly matched layer (PML) method for solving the acoustic scattering problems. We first prove the well-posedness and the stability of the time-dependent acoustic scattering problem with the Dirichlet-to-Neumann boundary condition. Next we show the well-posedness of the unsplit-field PML method for the acoustic scatt...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2020
ISSN: 0036-1429,1095-7170
DOI: 10.1137/19m126517x