Convergence and extension theorems in geometric function theory
نویسندگان
چکیده
منابع مشابه
Carrier and Nerve Theorems in the Extension Theory
We show that a regular cover of a general topological space provides structure similar to a triangulation. In this general setting we define analogues of simplicial maps and prove their existence and uniqueness up to homotopy. As an application we give simple proofs of sharpened versions of nerve theorems of K. Borsuk and A. Weil, which state that the nerve of a regular cover is homotopy equiva...
متن کاملRepresentation Theory of Geometric Extension Algebras
We study the question of when geometric extension algebras are polynomial quasihereditary. Our main theorem is that under certain assumptions, a geometric extension algebra is polynomial quasihereditary if and only if it arises from an even resolution. We give an application to the construction of reflection functors for quiver Hecke algebras.
متن کاملConvergence Theorems for -Nonexpansive Mappings in CAT(0) Spaces
In this paper we derive convergence theorems for an -nonexpansive mappingof a nonempty closed and convex subset of a complete CAT(0) space for SP-iterative process and Thianwan's iterative process.
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2003
ISSN: 0386-5991
DOI: 10.2996/kmj/1061901061