Convergence of a linearly transformed particle method for aggregation equations
نویسندگان
چکیده
منابع مشابه
Uniform Convergence of a Linearly Transformed Particle Method for the Vlasov-Poisson System
A particle method with linear transformation of the particle shape functions is studied for the 1d-1v Vlasov-Poisson equation, and a priori error estimates are proven which show that the approximated densities converge in the uniform norm. When compared to standard fixedshape particle methods, the present approach can be seen as a way to gain one order in the convergence rate of the particle tr...
متن کاملBoundary particle method for Laplace transformed time fractional diffusion equations
This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Lapl...
متن کاملConvergence of the multistage variational iteration method for solving a general system of ordinary differential equations
In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.
متن کاملA new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2018
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-018-0958-2