Convergence of a random walk method for a partial differential equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a random walk method for a partial differential equation

A Cauchy problem for a one–dimensional diffusion–reaction equation is solved on a grid by a random walk method, in which the diffusion part is solved by random walk of particles, and the (nonlinear) reaction part is solved via Euler’s polygonal arc method. Unlike in the literature, we do not assume monotonicity for the initial condition. It is proved that the algorithm converges and the rate of...

متن کامل

Convergence of a Random Walk Method for the Burgers Equation

We show that the solution of the Burgers equation can be approximated in LX(R), to within 0(m~1/*(lnm)2), by a random walk method generated by 0(m) particles. The nonlinear advection term of the equation is approximated by advecting the particles in a velocity field induced by the particles. The diffusive term is approximated by adding an appropriate random perturbation to the particle position...

متن کامل

Exact solutions of a linear fractional partial differential equation via characteristics method

‎In recent years‎, ‎many methods have been studied for solving differential equations of fractional order‎, ‎such as Lie group method, ‎invariant subspace method and numerical methods‎, ‎cite{6,5,7,8}‎. Among this‎, ‎the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order‎. In this paper we apply this method f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1998

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-98-00917-x