Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strang Splitting Methods for a Quasilinear Schrödinger Equation - Convergence, Instability and Dynamics

We study the Strang splitting scheme for quasilinear Schrödinger equations. We establish the convergence of the scheme for solutions with small initial data. We analyze the linear instability of the numerical scheme, which explains the numerical blow-up of large data solutions and connects to analytical breakdown of regularity of solutions to quasilinear Schrödinger equations. Numerical tests a...

متن کامل

Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation

We analyze a discretization method for a class of degenerate parabolic problems that includes the Richards’ equation. This analysis applies to the pressure-based formulation and considers both variably and fully saturated regimes. To overcome the difficulties posed by the lack in regularity, we first apply the Kirchhoff transformation and then integrate the resulting equation in time. We state ...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Strang Splitting Methods Applied to a Quasilinear Schrödinger Equation - Convergence and Dynamics

We study numerically a class of quasilinear Schrödinger equations using the Strang splitting method. For these particular models, we can prove convergence of our approximation by adapting the work of Lubich [30] for a Lie theoretic approach to the continuous time approximation and Sobolev-based well-posedness results of the second author with J. Metcalfe and D. Tataru in order to model small in...

متن کامل

A Posteriori Error Estimates for a Nonconforming Finite Element Discretization of the Heat Equation

Abstract. The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in R, d = 2 or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 2017

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/2016059