Convergence of energy stable finite-difference schemes with interfaces
نویسندگان
چکیده
We extend the convergence results in Svärd and Nordström (2019) [7] for single-domain energy-stable high-order finite difference schemes, to include domains split into several grid blocks. The analysis also demonstrates that reflective boundary conditions enjoy same properties. Finally, we briefly indicate these (and previous ones [7]) hold multiple dimensions.
منابع مشابه
On the Convergence Rates of Energy- Stable Finite-Difference Schemes
We consider initial-boundary value problems, with a kth derivative in time and a highest spatial derivative of order q, and their semi-discrete finite difference approximations. With an internal truncation error of order p ≥ 1, and a boundary error of order r ≥ 0, we prove that the convergence rate is: min(p, r + q). The assumptions needed for these results to hold are: i) The continuous proble...
متن کاملConvergence of Finite Difference Methods for Poisson’s Equation with Interfaces
In this paper, a weak formulation of the discontinuous variable coefficient Poisson equation with interfacial jumps is studied. The existence, uniqueness and regularity of solutions of this problem are obtained. It is shown that the application of the Ghost Fluid Method by Fedkiw, Kang, and Liu to this problem in [9] can be obtained in a natural way through discretization of the weak formulatio...
متن کاملnumerics of stochastic parabolic differential equations with stable finite difference schemes
in the present article, we focus on the numerical approximation of stochastic partial differential equations of itˆo type with space-time white noise process, in particular, parabolic equations. for each case of additive andmultiplicative noise, the numerical solution of stochastic diffusion equations is approximated using two stochastic finite difference schemes and the stability and consisten...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملA family of energy stable, skew-symmetric finite difference schemes on collocated grids
A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on a collocated grids. Energy stability is implied by maintaining strict energy conservation. Momentum is conserved. Arbitrary order in space and time can easily be obtained. The conservation properties hold on transformed grids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2020.110020