Convergence of Krasnoselskii-Mann iterations of nonexpansive operators
نویسندگان
چکیده
منابع مشابه
Generalized Krasnoselskii-Mann-type iterations for nonexpansive mappings in Hilbert spaces
The Krasnoselskii-Mann iteration plays an important role in the approximation of fixed points of nonexpansive operators; it is is known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a new inexact Krasnoselskii-Mann iteration and prove weak convergence under certain accuracy criteria on the error resulting from the inexactness. We also show strong...
متن کاملWeak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings
The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...
متن کاملStrong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces
In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings. Then, we give applications of our main results in equilibrium problems.
متن کاملStrong Convergence of Modified Mann Iterations for Lipschitz Pseudocontractions
In this paper, for a Lipschitz pseudocontractive mapping T, we study the strong convergence of the iterative scheme generated by ( ) (( ) ) , 1 1 1 n n n n n n n Tx u x x β + β − α + α − = + when { } { } n n α β , satisfy ( ) ; 0 lim i = α ∞ → n n ( ) ; ii 1 ∞ = α ∑ ∞ = n n ( ) . 0 lim iii = β ∞ → n n JING HAN and YISHENG SONG 148
متن کاملOn Equivalence between Convergence of Ishikawa––mann and Noor Iterations
In this paper, we prove the equivalence of convergence between the Mann–Ishikawa– Noor and multistep iterations for Φ− strongly pseudocontractive and Φ− strongly accretive type operators in an arbitrary Banach spaces. Results proved in this paper represent an extension and refinement of the previously known results in this area. Mathematics subject classification (2010): 47H09, 47H10, 47H15.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2000
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(00)00214-4