Convergence of Krasnoselskii-Mann iterations of nonexpansive operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Krasnoselskii-Mann-type iterations for nonexpansive mappings in Hilbert spaces

The Krasnoselskii-Mann iteration plays an important role in the approximation of fixed points of nonexpansive operators; it is is known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a new inexact Krasnoselskii-Mann iteration and prove weak convergence under certain accuracy criteria on the error resulting from the inexactness. We also show strong...

متن کامل

Weak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings

The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...

متن کامل

Strong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces

In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings.  Then, we give  applications of our main results in equilibrium problems.

متن کامل

Strong Convergence of Modified Mann Iterations for Lipschitz Pseudocontractions

In this paper, for a Lipschitz pseudocontractive mapping T, we study the strong convergence of the iterative scheme generated by ( ) (( ) ) , 1 1 1 n n n n n n n Tx u x x β + β − α + α − = + when { } { } n n α β , satisfy ( ) ; 0 lim i = α ∞ → n n ( ) ; ii 1 ∞ = α ∑ ∞ = n n ( ) . 0 lim iii = β ∞ → n n JING HAN and YISHENG SONG 148

متن کامل

On Equivalence between Convergence of Ishikawa––mann and Noor Iterations

In this paper, we prove the equivalence of convergence between the Mann–Ishikawa– Noor and multistep iterations for Φ− strongly pseudocontractive and Φ− strongly accretive type operators in an arbitrary Banach spaces. Results proved in this paper represent an extension and refinement of the previously known results in this area. Mathematics subject classification (2010): 47H09, 47H10, 47H15.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2000

ISSN: 0895-7177

DOI: 10.1016/s0895-7177(00)00214-4