Convergence of Poisson integrals on generalized upper half-planes
نویسندگان
چکیده
منابع مشابه
Vitali Convergence Theorem for Upper Integrals
It is shown that the Vitali convergence theorem remains valid for the -upper integral. Using this result we prove completeness of the space L( ) with respect to the k kp-upper norm for 1 p < 1 , describe convergence of its elements in terms of the space L( ) for 1 p < 1 , give a necessary and sufficient condition for a sequence from L( ) to converge in the k kp-upper norm to a function from L( ...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملConvergence of poisson integrals for bounded symmetric domains.
1. The purpose of this note is to describe the extension of the almost everywhere convergence of Poisson integrals to the case of the bounded symmetric domains of Cartan. It is useful to realize such a bounded symmetric domain D as a generalized upper half-plane (i.e., a Siegel domain of type II), and this is done as follows. Let V1 and V2 be two finite-dimensional vector spaces over C. Assume ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1969
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1969-0234014-9