Convergence Rate of Inertial Proximal Algorithms with General Extrapolation and Proximal Coefficients
نویسندگان
چکیده
منابع مشابه
Convergence of Proximal-Like Algorithms
We analyze proximal methods based on entropy-like distances for the minimization of convex functions subject to nonnegativity constraints. We prove global convergence results for the methods with approximate minimization steps and an ergodic convergence result for the case of finding a zero of a maximal monotone operator. We also consider linearly constrained convex problems and establish a qua...
متن کاملLocal and Global Convergence of a General Inertial Proximal Splitting Scheme
This paper is concerned with convex composite minimization problems in a Hilbert space. In these problems, the objective is the sum of two closed, proper, and convex functions where one is smooth and the other admits a computationally inexpensive proximal operator. We analyze a general family of inertial proximal splitting algorithms (GIPSA) for solving such problems. We establish finiteness of...
متن کاملThe convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization
The proximal alternating direction method of multipliers (P-ADMM) is an efficient first-order method for solving the separable convex minimization problems. Recently, He et al. have further studied the P-ADMM and relaxed the proximal regularization matrix of its second subproblem to be indefinite. This is especially significant in practical applications since the indefinite proximal matrix can ...
متن کاملEpigraph proximal algorithms for general convex programming
This work aims at partially bridging the gap between (generic but slow) “generalpurpose” convex solvers and (fast but constricted) “specialized” solvers. We develop the Epsilon system, a solver capable of handling general convex problems (inputs are specified directly as disciplined convex programs); however, instead of transforming these problems to cone form, the compiler transforms them to a...
متن کاملLinear Convergence of Proximal Gradient Algorithm with Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
In this paper, we study the proximal gradient algorithm with extrapolation for minimizing the sum of a Lipschitz differentiable function and a proper closed convex function. Under the error bound condition used in [19] for analyzing the convergence of the proximal gradient algorithm, we show that there exists a threshold such that if the extrapolation coefficients are chosen below this threshol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vietnam Journal of Mathematics
سال: 2020
ISSN: 2305-221X,2305-2228
DOI: 10.1007/s10013-020-00399-y