Convergence Rates of the POD–Greedy Method
نویسندگان
چکیده
منابع مشابه
Convergence Rates of the Pod-greedy Method
Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a-priori convergence rate statements for this algorithm have been given (Buffa et al 2009, Binev et al. 2010). The goal of the curre...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Convergence rates of the continuous regularized Gauss—Newton method
In this paper a convergence proof is given for the continuous analog of the Gauss—Newton method for nonlinear ill-posed operator equations and convergence rates are obtained. Convergence for exact data is proved for nonmonotone operators under weaker source conditions than before. Moreover, nonlinear ill-posed problems with noisy data are considered and a priori and a posteriori stopping rules ...
متن کاملSharpness in rates of convergence for the symmetric Lanczos method
The Lanczos method is often used to solve a large and sparse symmetric matrix eigenvalue problem. There is a well-established convergence theory that produces bounds to predict the rates of convergence good for a few extreme eigenpairs. These bounds suggest at least linear convergence in terms of the number of Lanczos steps, assuming there are gaps between individual eigenvalues. In practice, o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 2013
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/2012045