Convex Formulations for Fair Principal Component Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Formulations for Fair Principal Component Analysis

Though there is a growing body of literature on fairness for supervised learning, the problem of incorporating fairness into unsupervised learning has been less well-studied. This paper studies fairness in the context of principal component analysis (PCA). We first present a definition of fairness for dimensionality reduction, and our definition can be interpreted as saying that a reduction is ...

متن کامل

Stochastic convex sparse principal component analysis

Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is importa...

متن کامل

Tensor principal component analysis via convex optimization

This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...

متن کامل

Strongly Convex Programming for Principal Component Pursuit

In this paper, we address strongly convex programming for principal component pursuit with reduced linear measurements, which decomposes a superposition of a low-rank matrix and a sparse matrix from a small set of linear measurements. We first provide sufficient conditions under which the strongly convex models lead to the exact low-rank and sparse matrix recovery; Second, we also give suggesti...

متن کامل

Supervised Exponential Family Principal Component Analysis via Convex Optimization

Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure in the data. In this paper, we present a novel convex supervised dimensionality reduction approach based on exponential family PCA, which is able to avoid the local optima of typical EM learning. Moreover, by introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.3301663