Convolutional Dictionary Learning: Acceleration and Convergence
نویسندگان
چکیده
منابع مشابه
Convolutional Analysis Operator Learning: Acceleration, Convergence, Application, and Neural Networks
Convolutional operator learning is increasingly gaining attention in many signal processing and computer vision applications. Learning kernels has mostly relied on so-called local approaches that extract and store many overlapping patches across training signals. Due to memory demands, local approaches have limitations when learning kernels from large datasets—particularly with multi-layered st...
متن کاملConvolutional Dictionary Learning
Convolutional sparse representations are a form of sparse representation with a dictionary that has a structure that is equivalent to convolution with a set of linear filters. While effective algorithms have recently been developed for the convolutional sparse coding problem, the corresponding dictionary learning problem is substantially more challenging. Furthermore, although a number of diffe...
متن کاملConvolutional Dictionary Learning through Tensor Factorization
Tensor methods have emerged as a powerful paradigm for consistent learning of many latent variable models such as topic models, independent component analysis and dictionary learning. Model parameters are estimated via CP decomposition of the observed higher order input moments. However, in many domains, additional invariances such as shift invariances exist, enforced via models such as convolu...
متن کاملFirst and Second Order Methods for Online Convolutional Dictionary Learning
Convolutional sparse representations are a form of sparse representation with a structured, translation invariant dictionary. Most convolutional dictionary learning algorithms to date operate in batch mode, requiring simultaneous access to all training images during the learning process, which results in very high memory usage, and severely limits the training data that can be used. Very recent...
متن کاملMulti-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning
The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural Networks (CNNs). Under this framework, the computation of the forward pass in a CNN is equivalent to a pursuit algorithm aiming to estimate the nested sparse representation vectors – or feature maps – from a g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2018
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2017.2761545