Convolutional Neural Network for Closed-Set Identification from Resting State Electroencephalography

نویسندگان

چکیده

In line with current developments, biometrics is becoming an important technology that enables safer identification of individuals and more secure access to sensitive information assets. Researchers have recently started exploring electroencephalography (EEG) as a biometric modality thanks the uniqueness EEG signals. A new architecture for convolutional neural network (CNN) uses signals suggested in this paper identification. CNN does not need complex signal pre-processing, feature extraction, selection stages. The datasets utilized research are resting state eyes open (REO) closed (REC) EEG. Extensive experiments were performed design deep architecture. These showed eleven layers (eight layers, one average pooling layer, two fully connected layers) Adam optimizer resulted highest accuracy. proposed here was compared existing models using same dataset. results show method outperforms other task-free paradigm models, accuracy 98.54%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Neural Network for Paraphrase Identification

We present a new deep learning architecture Bi-CNN-MI for paraphrase identification (PI). Based on the insight that PI requires comparing two sentences on multiple levels of granularity, we learn multigranular sentence representations using convolutional neural network (CNN) and model interaction features at each level. These features are then the input to a logistic classifier for PI. All para...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

Closed-Set Chinese Word Segmentation Based on Convolutional Neural Network Model

This paper proposes a neural model for closed-set Chinese word segmentation. The model follows the character-based approach which assigns a class label to each character, indicating its relative position within the word it belongs to. To do so, it first constructs shallow representations of characters by fusing unigram and bigram information in limited context window via an element-wise maximum...

متن کامل

Art Painting Identification using Convolutional Neural Network

Convolutional Neural Network (CNN) applications have been suggested for many multimedia processing tasks and achieved great success. In this paper, we present a methodology about how to apply CNN for art painting identification. Each art painting image is distorted by various operations, such as lens distortion, scaling, rotation, etc., to simulate potential situation that it would be appeared ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10193442