Convolutional neural network simplification with progressive retraining

نویسندگان

چکیده

Kernel pruning methods have been proposed to speed up, simplify, and improve explanation of convolutional neural network (CNN) models. However, the effectiveness a simplified model is often below original one. In this letter, we present new based on objective subjective relevance criteria for kernel elimination in layer-by-layer fashion. During process, CNN retrained only when current layer entirely simplified, by adjusting weights from next first one preserving subsequent layers not involved process. We call strategy \emph{progressive retraining}, differently that usually retrain entire after each simplification action -- e.g., or few kernels. Our criterion exploits ability humans recognizing visual patterns improves designer's understanding The combination suitable progressive retraining shows our can increase with considerable simplification. also demonstrate provide better results than two popular ones another state-of-the-art using four challenging image datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Performance Comparison of Binarized Neural Network with Convolutional Neural Network

Deep learning is a trending topic widely studied by researchers due to increase in the abundance of data and getting meaningful results with them. Convolutional Neural Networks (CNN) is one of the most popular architectures used in deep learning. Binarized Neural Network (BNN) is also a neural network which consists of binary weights and activations. Neural Networks has large number of paramete...

متن کامل

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2021

ISSN: ['1872-7344', '0167-8655']

DOI: https://doi.org/10.1016/j.patrec.2021.06.032